Enhancing Acoustic Performance with appropriate Glass

Sharanjit Singh Managing committee FOSG and Chairman GSC Glass Ltd.

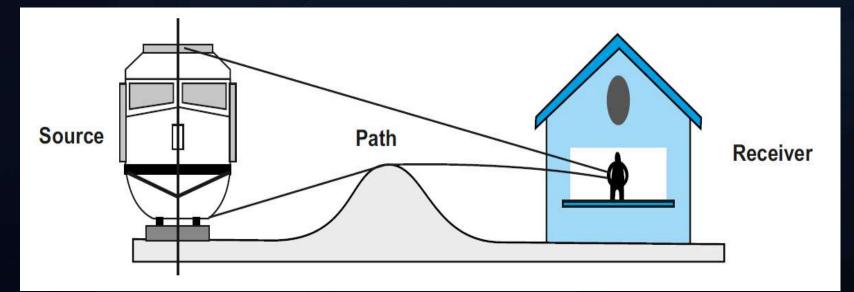
Noise

- Modern living & growing technology creates noise / sound
- Sound can distract attention, disturb sleep & create anxiety
- Prolonged exposure to high level of sound can impair hearing permanently
- Acoustic control is keeping noise levels within reasonable limits...

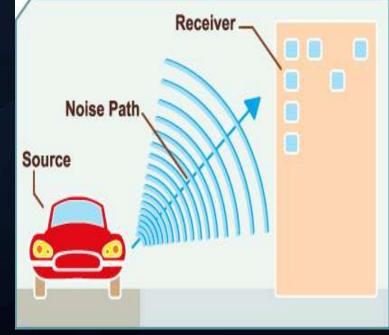
Sound and Noise

- Sound is a vibration that propagates as a wave of pressure and displacement, through a medium such as air or water and can be heard when they reach a person's ear.
- Noise is a sound that is unwanted because it is unpleasant, loud, or interferes with hearing...

Music


Vibration

Noise


Key Elements

Source: when there is no source, there is Obviously no sound Path: Through which sound travels from source to receiver Receiver: The human ear and other surrounding materials.

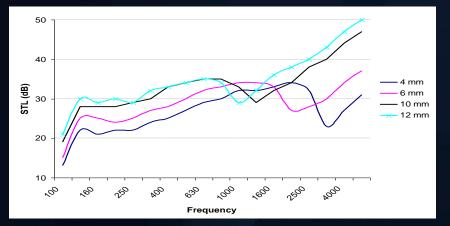
How does noise become a problem?

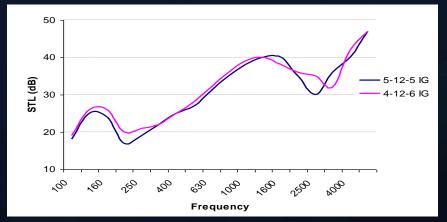
- A noise problem starts with a noise source such as a stream of traffic or any other source is very high.
- The noise is transmitted through a path and then arrives at the receiver.
- The noise will be perceived as a problem when the noise is so high as to be a nuisance to the receiver...

$$L_P = 10 \cdot \log \frac{\Sigma p_i^2}{p_0^2}$$

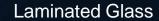
$$L = 10 \, \text{Log}_{10} \left(\sum_{i=1}^{n} 10^{(\text{Li} / 10)} \right)$$

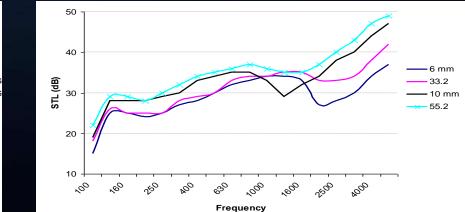
NPL =
$$L_{50} + L_{10} - L_{90} + \frac{(L_{10} - L_{90})^2}{60}$$

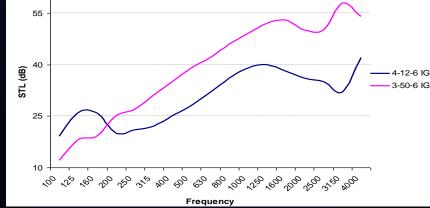

- L_p : Level of the sound pressure (dB)
- Pi : Sound pressure (Pa)
- P₀: Reference level (Pa)
- (hearing level: 0.00002 Pa)

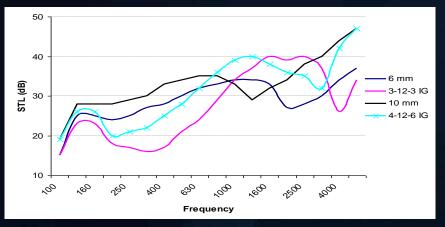

• Adding three levels 94.0 + 96.0 + 98.0: L = 10 Log₁₀ ($10^{9.4} + 10^{9.6} + 10^{9.8}$) = 101.1 dB

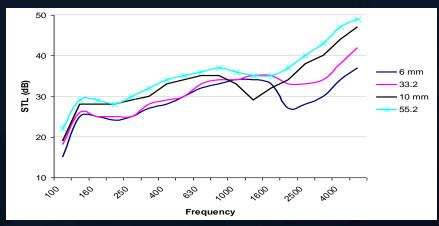
- L₁₀ = Level exceeded 10% of Time,
 L₅₀ = Level exceeded 50% of Time,
 L₉₀ = Level exceeded 90% of Time.
- dB(A) level exceeded 90 % of time (L90)=30 dB
 dB(A) level exceeded 50 % of time (L50)=20 dB
 dB(A) level exceeded 10 % of time (L10)=10 dB
 Noise Pollution Level NPL in dB(A) = 6.6667 dB.


Usage of Thicker Glass

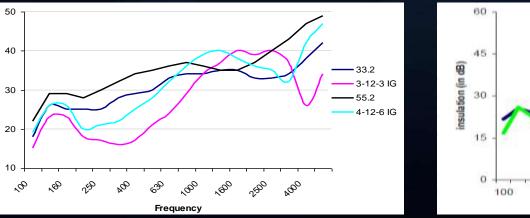

Asymmetrical Double Glazing

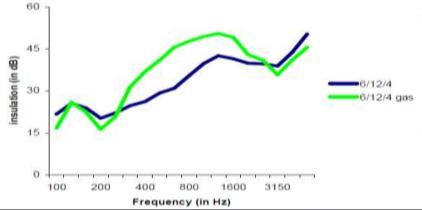



Increasing Air Gap between IG units



Insulated Glass Vs. Thicker Glass


Laminated Glass Vs. Thicker Glass



Laminated Glass Vs. Insulated Glass

STL (dB)

Let us Keep it

Simple and Basic

Loudness

- Loudness, or intensity of a sound is commonly measured in Decibels or dB
- 1 decibel = 1/10 of 1 bel
- It is a Logarithmic scale. Like 'Richter scale' for earthquakes
- An earthquake of intensity 6.0 is mild whereas 9.0 is ??
- A small increase in dB means substantial increment in loudness
- 2 trumpets each producing a level of 80 dB together produce 83 dB, and not 160 dB...

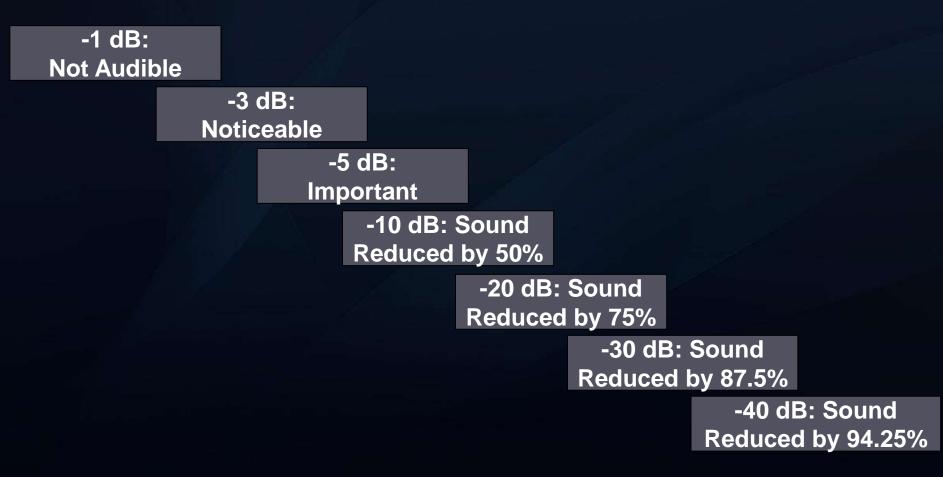
70 dB

X 2

30 dB

X 4

40 dB x 10


70 dB + 80 dB = 80.4 dB

60 dB

Human Ear & Acoustic Insulation

Quality or Type of Sound

- Sound arises from molecules vibrating in a gas, liquid or solid.
- The number of vibrations or sound waves emitted per second is known as the frequency and is expressed in Hertz (Hz)..

Low and High frequency Sounds

- Low-frequency are base sounds: Music drums, lower notes in music
- Mid frequency sounds: Human conversation, Traffic noise, normal horn
- High-frequency are shrill or sharp sounds: whistle, a bird chirping, pressure horn
- Each glass thickness has a critical frequency at which its sound reduction value is low.
- It is more difficult to provide effective acoustic insulation for facades subjected to high-intensity but low-frequency noise (such as road traffic)...

Sound Travel

- Sound arises from molecules vibrating in a gas, liquid or solid.
- Medium of travel is important
- The transfer of sound is different in different mediums
- Sound does not travel through Vacuum...

No Medium No Sound

Space Shuttle at take off

SOUND	dB	LOUDNESS
Space Shuttle	188	Dangerously loud

Jet Engine at take off

SOUND	dB	LOUDNESS
Space Shuttle	188	Dangerously loud
Jet Engine	150	Painfully loud

Low Caliber Rifle

SOUND	dB	LOUDNESS
Space Shuttle	188	Dangerously loud
Jet Engine	150	Painfully loud
Low Caliber Rifle	140	Painfully loud

Pneumatic Drill

SOUND	dB	LOUDNESS
Space Shuttle	188	Dangerously loud
Jet Engine	150	Painfully loud
Low Caliber Rifle	140	Painfully loud
Pneumatic Drill	100	Very loud

SOUND	dB	LOUDNESS
Space Shuttle	188	Dangerously loud
Jet Engine	150	Painfully loud
Low Caliber Rifle	140	Painfully loud
Pneumatic Drill	100	Very loud
Diesel Generator, diesel pump set	100-90	Very loud

Heavy Traffic

SOUND	dB	LOUDNESS
Space Shuttle	188	Dangerously loud
Jet Engine	150	Painfully loud
Low Caliber Rifle	140	Painfully loud
Pneumatic Drill	100	Very loud
Diesel Generator, diesel pump set	100-90	Very loud
Heavy Traffic	90	Very loud

Loud Music

SOUND	dB	LOUDNESS
Space Shuttle	188	Dangerously loud
Jet Engine	150	Painfully loud
Low Caliber Rifle	140	Painfully loud
Pneumatic Drill	100	Very loud
Diesel Generator, diesel pump set	100-90	Very loud
Heavy Traffic	90	Very loud
Loud Music	90	Very loud

Noisy Factory

SOUND	dB	LOUDNESS
Space Shuttle	188	Dangerously loud
Jet Engine	150	Painfully loud
Low Caliber Rifle	140	Painfully loud
Pneumatic Drill	100	Very loud
Diesel Generator, diesel pump set	100-90	Very loud
Heavy Traffic	90	Very loud
Loud Music	90	Very loud
Noisy Factory	90	Very loud

Vacuum Cleaner/ home appliances

SOUND	dB	LOUDNESS
Space Shuttle	188	Dangerously loud
Jet Engine	150	Painfully loud
Low Caliber Rifle	140	Painfully loud
Pneumatic Drill	100	Very loud
Diesel Generator, diesel pump set	100-90	Very loud
Heavy Traffic	90	Very loud
Loud Music	90	Very loud
Noisy Factory	90	Very loud
Vacuum Cleaner/ home appliances	80-90	Very loud

Average Street Noise

SOUND	dB	LOUDNESS
Space Shuttle	188	Dangerously loud
Jet Engine	150	Painfully loud
Low Caliber Rifle	140	Painfully loud
Pneumatic Drill	100	Very loud
Diesel Generator, diesel pump set	100-90	Very loud
Heavy Traffic	90	Very loud
Loud Music	90	Very loud
Noisy Factory	90	Very loud
Vacuum Cleaner/ home appliances	80-90	Very loud
Average Street Noise	70	Moderate

SOUND	dB	LOUDNESS
Space Shuttle	188	Dangerously loud
Jet Engine	150	Painfully loud
Low Caliber Rifle	140	Painfully loud
Pneumatic Drill	100	Very loud
Diesel Generator, diesel pump set	100-90	Very loud
Heavy Traffic	90	Very loud
Loud Music	90	Very loud
Noisy Factory	90	Very loud
Vacuum Cleaner/ home appliances	80-90	Very loud
Average Street Noise	70	Moderate
Average TV at 1 m	65	Moderate
	- 03-	Woderate

Average TV at 1 m

Average Office Noise

SOUND	dB	LOUDNESS
Space Shuttle	188	Dangerously loud
Jet Engine	150	Painfully loud
Low Caliber Rifle	140	Painfully loud
Pneumatic Drill	100	Very loud
Diesel Generator, diesel pump set	100-90	Very loud
Heavy Traffic	90	Very loud
Loud Music	90	Very loud
Noisy Factory	90	Very loud
Vacuum Cleaner/ home appliances	80-90	Very loud
Average Street Noise	70	Moderate
Average TV at 1 m	65	Moderate
Average Office Noise	60	Moderate

Desired levels

ACTIVITY AREA	GOOD (dB)	REASONABLE (dB)
Residential at night	30	40
Bedroom at night	25	30
Class room	35	45
Commercial offices	40	50
Restaurant	40	50
Theatre	25	30

Reduction of Noise at source itself

Using Diesel generator set with sound reducing enclosures.

Silencer on a gun

Silencer on a motorcycle

Insulating the noisy areas like Discotheque in a Hotel

To prevent noise from going out to adjoining areas

Insulating the building or working areas from outside noise

The surroundings materials to be sound absorbing

Sound Reduction Class or STC

STC What can be heard

- 25 Normal speech can be understood quite easily and distinctly through wall
- **30** Loud speech can be understood fairly well, normal speech heard but not understood
- **35** Loud speech audible but not intelligible
- 40 Onset of "privacy"
- **42** Loud speech audible as a murmur
- **45** Loud speech not audible; 90% of statistical population not annoyed
- 50 Very loud sounds such as musical instruments or a stereo can be faintly heard; 99% of population not annoyed
- **60*** Superior soundproofing; most sounds inaudible..

Glass and sound reduction

- Using Thicker glass
- Laminated glass
- Acoustic PVB
- Non symmetric combinations
- Increase Gap in DGU
- Fill Gas in DGU..

Insulating Glass or DGU

- Is not a Vacuum Glass. It has air or Gas between two panes
- A normal Insulated Glass does not help in sound insulation
- 6+12+6mm assembly will be same as 12mm single
- Dissimilar Panes like 6+12+8 will help to some extent
- Increasing the Air Gap will help but cannot go beyond a point
- Filling with some special gases like Krypton or Xenon (not Argon) will help marginally...

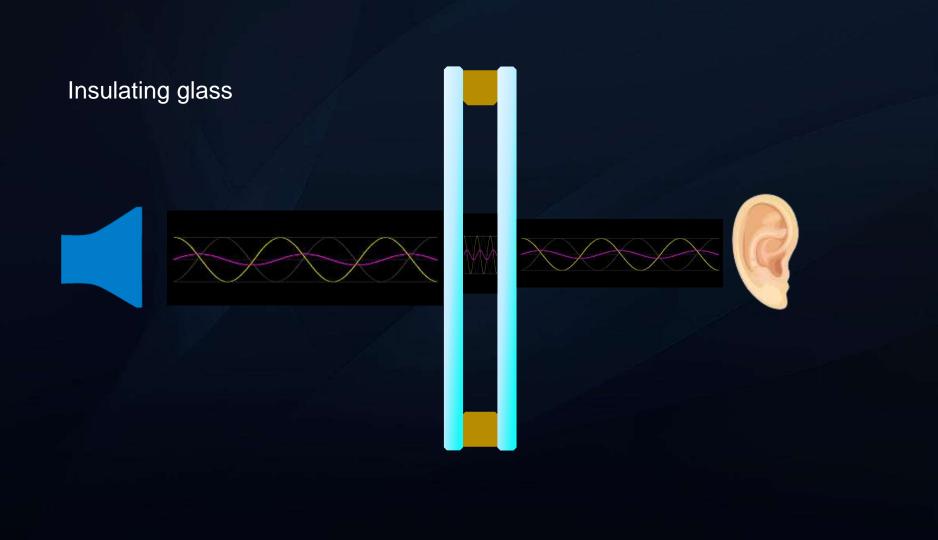
Laminated Glass is best

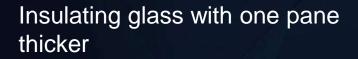
- The PVB interlayer provides a dampening effect
- Reduces vibration by absorbing the sound waves
- Superior sound insulation in higher frequency range also
- Increasing the thickness of interlayer has marginal effect
- Outer glass has to be thinnest and Inner glass to be thickest
- Using one pane in DGU enhances the performance
- Both panes laminated will further enhance the sound insulation
- Acoustic PVB's will further reduce by 2-3 dB...

Factors not effecting Sound Insulation

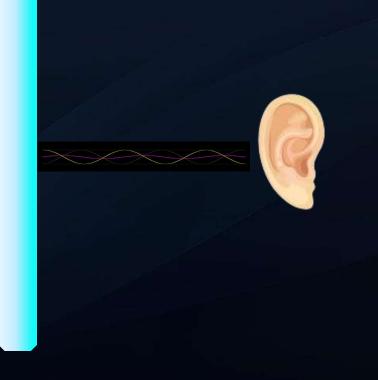
- Tint / Color of glass
- Coatings (Reflective / Low-e) on glass
- Position of glass
- Tempering
- Annealed glass of a particular company...

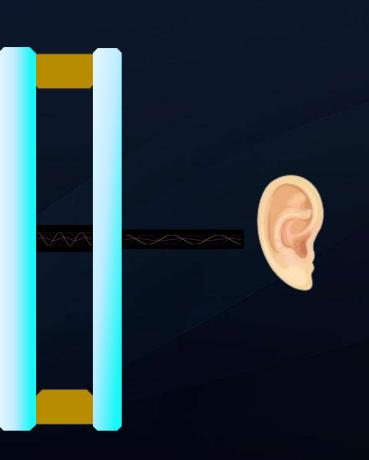
Thinner glass

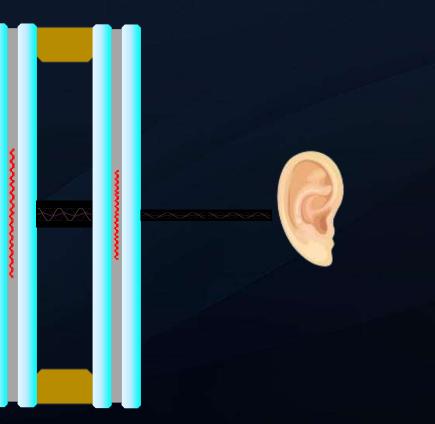



Thicker glass

Insulating glass with wider gap & one pane thicker


Laminated glass


Laminated glass with one pane thicker


Insulating glass with one pane laminated

Insulating glass with both panes laminated

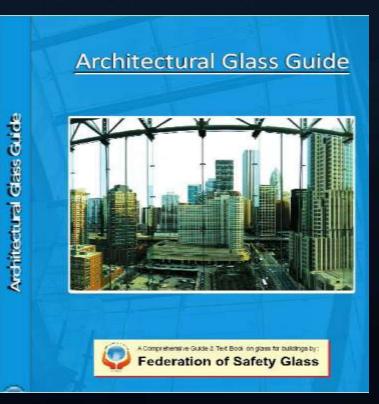
Use Combination of Insulated & Laminated Glasses

	Inside	Construction Space	Outside	STC Value	R_{w}
Monolithic Glass	6 mm	-	-	31	32
	12 mm	-	-	36	37
Insulated Glass	3 mm	8 mm Air	3 mm	28	30
	6 mm	12 mm Air	6 mm	35	35
	6 mm	25 mm Air	6 mm	37	37
Laminated Glass	3 mm	0.76 mm PVB	3 mm	35	35
	6 mm	0.76 mm PVB	3 mm	36	36
	6 mm	1.52 mm PVB	3 mm	37	37
	6 mm	0.76 mm PVB	6 mm	38	38
	6 mm	1.52 mm PVB	6 mm	39	39
	10 mm	0.76 mm PVB	6 mm	40	40
	12 mm	1.52 mm PVB	6 mm	41	41
Laminated Insulating Glass	6.76 mm	12 mm Air	6 mm	39	39
	6.76 mm	12 mm Air	5 mm	39	39
	10.76 mm	12 mm Air	6 mm	40	40
	6.76 mm	25 mm Air	5 mm	42	42
	6.76 mm	12 mm Air	6.76 mm	43	43

Sealing

- No matter how good the noise insulation quality of the window is, there should be no gaps or cracks around the window frame
- Doors should also have gaskets or foam tapes or soft seals
- Normal 12mm doors as mostly used: will only give a low to medium sound insulation
- The biggest challenge is to provide for ventilation for such sealed areas...

Conclusions


- Maximum Mass: Thicker glass or combinations
- Maximum Asymmetry: Use different thicknesses and different mediums of travel
- Proper sealing but provide for ventilation
- Achieving STC 40 is easy, 45 is struggle, beyond 45 has to be double wall
- Examine noise levels and desirable levels to give optimum cost effective solution...

All this and more in this Guide from FOSG

Acoustics page 35-43

Available at FOSG Stand in this Hall #3

Thank you for your attention.

